
Fengrun Liu(刘冯润) 2023.9

lookup

Outline

Permutation check in Plonk

Plookup in high level: multiset check in plonk and plookup

Plookup in detail: reduced to one multiset check

Batch-column lookups: logUp

logUp

Multivariate PlookUp

Plonk
Gadgets for univariate polynomial over a multiplicative subgroup.

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Plonk
Gadget 1: ZeroTest

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Plonk
Gadget 2: Prod Check / Sum Check

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Plonk
Gadget 3: Prod Check / Sum Check

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Plonk
Gadget 3: Prod Check for rational functions

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Plonk
Gadget 4: Permutation Check

refer to https://f7ed.com/2023/07/21/zkp-lec5/

Multiset checks in Plonk and Plookup
Reduce Multiset Equality Check (Permutation) to Grand Products

refer to https://hackmd.io/@arielg/ByFgSDA7D

Multiset checks in Plonk and Plookup
Prescribed Permutation

refer to https://hackmd.io/@arielg/ByFgSDA7D

Reduced to multiset-equal to vectors of elements

 implies w.h.p.a′ i = b′ i (ai, i) = (bi, σ(i))
think of each element as formal polynomials in ,β

Multiset checks in Plonk and Plookup
Motivation of lookup

refer to https://hackmd.io/@arielg/ByFgSDA7D

Lookup tables are an alternative approach to operations requiring many constraints.

Vector lookups: reduce tuples to a single element by randomization

Multiset checks in Plonk and Plookup
Main idea of Plookup: sort and compare difference

refer to https://hackmd.io/@arielg/ByFgSDA7D

A simpler reduction using two multiset checks:
1. Between and
2. Between and

s (f, t)
s′ t′ ′

Goal:

Observation (with issues):

Counterexample with different order:
 then we have with different order to .s = (1,1,4,4,4,4,5,5) s′ = (0,3,0,0,0,1,0) t′

Compare the set of non-zero difference set:
• Captured by a multiset check with

 and .
• where = concatenated with zeros

t′ ′ = (1,3,0,0,0,0,0) s′

t′ ′ t′ | f |

Proof of (1+2 imply)
- 1 implies : to prove
- 2 implies has at most elem.

- implies has at most elem.
- 1 implies

- implies has more than elem.

f ⊂ t
f ⊂ s s ⊂ t
s′ | t | − 1

s | t |
t ⊂ s

s | t |

Multiset checks in Plonk and Plookup
Plookup reduction: only uses one multiset check with randomization

refer to https://hackmd.io/@arielg/ByFgSDA7D

A simpler reduction using two multiset checks:
1. Between and
2. Between and

s (f, t)
s′ t′ ′

Goal:

Plookup reduction using only one multiset checks:
1. Define , to be the “randomized difference vectors” of and .
2. Multiset check between and

s′ t′ s t
s′ ((1 + β)f, t′)

Multiset check between randomized difference vectors and :
• Main idea: randomize each pair of adjacent elements between (sorted version) and .
• For each element (can be thought of as the polynomial in)

• : implies implies
• : implies implies is contained in implies

s′ ((1 + β)f, t′)
s (f, t)

s′ i = si + si+1 ⋅ β β
si = si+1 s′ i = (1 + β)fj = fj + fj ⋅ β si = si+1 = fj f ⊂ s
si ≠ si+1 s′ i = t′ j = tj + tj+1 ⋅ β (si, si+1) = (tj, tj+1) si+1 t s ⊂ t

f: 2 2 1 1 5
t: 1 2 5
s: 1 1 1 2 2 2 5 5

F(β, γ) = ∏
j

(γ + fj + fj ⋅ β) ⋅ ∏
j

(γ + tj + tj+1 ⋅ β) G(β, γ) = ∏
i

(γ + si + si+1 ⋅ β)
Reduce the multiset check to grand product:

Plookup: details
Notations
Exact problem in [BCG+]:

Notations:

H-ranged Polynomial Protocol:

Reduced a point check to an H-ranged equality check:

“neighboring values” in multiplicative group

https://eprint.iacr.org/2020/315.pdf

Plookup: details
Main scheme

Proof is referred to in [GW20]

Grand Product Check:

Divide the computation to rounds.

F(β, γ)
G(β, γ)

=
n

∏
i=1

. . . = 1

n + 1

S1.

S3-5.

https://eprint.iacr.org/2020/315.pdf

Plookup: details
Main scheme

Grand Product Check:

Divide the computation to rounds.

F(β, γ)
G(β, γ)

=
n

∏
i=1

. . . = 1

n + 1

S1.

S3-5.

Verification:

1. Only commits to 3 auxiliary polynomials of degree n. -> 3n+3
2. The polynomial computed in H-ranged equality is of degree at most

(3n+1)-(n+1)=2n. -> 2n+1

https://eprint.iacr.org/2020/315.pdf

Plookup: details
Vector lookups and multiple tables

Vector lookups:

d

w

Main idea: view each row as a univariate polynomial in .α

Application: Key-value setting (XOR example)

Question: What is the difference between
the univariate poly. and multivariate poly.
in randomization ?

soundness probability is d ⋅ w/ |𝔽 |

Multiple tables:

Main idea: add a column specifying the table index

https://eprint.iacr.org/2020/315.pdf

Plookup: details
Optimization for continuous ranges

https://eprint.iacr.org/2020/315.pdf

Tables with continuous ranges:

Optimizations: protocol is parameterized by c A simpler reduction using two multiset checks:
1. Between and implies
2. Between and

s (f, t) f ⊂ s
s′ t′ ′

Simple case:
Let for .
1.
2.
3. for each
4. Multiset check between and

c = 1
ti = i − 1 i ∈ [n]
s1 = 0
s2n+1 = n − 1
si+1 − si ≤ 1 i ∈ [2n]

s (f, t)

General case:
Let for .
1.
2.
3. for each
4. Multiset check between and

c
ti = c(i − 1) i ∈ [n]
s1 = 0
s2n+1 = c(n − 1)
si+1 − si ≤ c i ∈ [2n]

s (f, t)

Recall:

Main idea: the constraints of S1-S3 imply s ⊂ t

Constraint :
can be plugged in its difference into the degree poly.
that vanishes on .

si+1 − si ≤ c
c + 1

{0,...,c}

complexity: (3 + c)n + 2

logUp
Comparison to previous work

https://eprint.iacr.org/2022/1530

Lookup problem: a column of size and a table of size m N

• Plookup [GW20]: quasilinear in both and in polynomial-IOP (univariate)

One intriguing question: whether the dependence on could be made sub-linear after performing a preprocessing step for the table T.

• Caulk [ZBK+22]:

• Caulk+[PK22]: getting rid of the dependence on table size completely.

• Flookup[GK22]: quasilinear in and has no dependence on after preprocessing step.
• logup[This]: batch-lookups over hypercube

m N

N

O(m2 + m log N)

O(m2)

m N

Batch-lookup problem: column of size and a table of size M |H | |H |

logUp
Main idea

https://eprint.iacr.org/2022/1530

∏
i∈[N]

(X − ai) = ∏
j∈[M]

(X − tj)mj

Recall the exact problem in [BCG+18]

logarithmic derivatives

Turns products into sums of reciprocals.

• Reduced to one grand product check with product = 1
• H-ranged polynomial-IOP (H is a multiplicative subgroup)
• In the univariate setting

• Reduced to sumcheck with sum = 0
• Lagrange-IOP over hypercube
• In the multivariate setting

H = {±1}n

logUp
Preliminaries: Lagrange Kernel

https://eprint.iacr.org/2022/1530

Notations:

Lagrange Kernel of :H

Sketch of properties:
1. symmetric
2. Lagrange polynomial on

associated with
3. Point evaluation on is

reduced on sum over hypercube

H
⃗y ∈ H

⃗y ∈ H

Unique Multilinear Extension 1. Lagrange polynomial on
associated with

2. Point evaluation on is
reduced on sum over hypercube

H
⃗y ∈ Fn

⃗y ∈ Fn

logUp
Preliminaries: Lagrange IOP over the boolean hypercube H = {±1}n

https://eprint.iacr.org/2022/1530

Unique Multilinear Extension 1. Lagrange polynomial on
associated with

2. Point evaluation on is
reduced on sum over hypercube

H
⃗y ∈ Fn

⃗y ∈ Fn

Lagrange IOP between prover and verifier:
1. verifier sends a random challenge
2. prover computes one or several functions over the boolean hypercube —— vector of for all

and gives the verifier oracle access to them.
3. verifier is allowed to query the oracles for their inner products with the Lagrange kernel associated with any

 —— vector of for all

y ∈ Fn

f(⃗x) x ∈ H

LH(⋅ , ⃗y) y ∈ Fn

LH(⃗x, ⃗y) x ∈ H
Motivation of Lagrange IOP: (or advantage of multivariate setting)

logUp
Preliminaries: Lagrange IOP over the boolean hypercube H = {±1}n

https://eprint.iacr.org/2022/1530

Unique Multilinear Extension 1. Lagrange polynomial on
associated with

2. Point evaluation on is
reduced on sum over hypercube

H
⃗y ∈ Fn

⃗y ∈ Fn

Lagrange IOP between prover and verifier:
1. verifier sends a random challenge
2. prover computes one or several functions over the boolean hypercube —— vector of for all

and gives the verifier oracle access to them.
3. verifier is allowed to query the oracles for their inner products with the Lagrange kernel associated with any

 —— vector of for all

y ∈ Fn

f(⃗X) X ∈ H

LH(⋅ , ⃗y) y ∈ Fn

LH(⃗X , ⃗y) X ∈ H

The domain evaluation of over can be computed in rather than LH(⃗X , ⃗y) H O(|H |) O(log |H | ⋅ |H |)

Main idea: split the computation into rounds

• for values

• for values

log |H |

pk(X1, …, Xk, y1, …, yk) =
1
2n

k

∏
j=1

(1 + Xj ⋅ yj) 2k

pk+1 = pk ⋅ (1 + Xk+1 ⋅ yk+1) 2k+1

logUp
Preliminaries: Sumcheck for a batch of polynomials

https://eprint.iacr.org/2022/1530

Reduced to a single sum

 sumcheck protocol for L + 1 p0, …, pL sumcheck protocol for 1 p̄(X1, …, Xn) = p0(X1, …, Xn) +
L

∑
i=1

λi ⋅ pi(X1, …, Xn)

Claims for

•
i = 0,…, L

∑ pi(X1, …, Xn) = si

s0 +
L

∑
i=1

λisiClaims for a single sum:

viewed as a multivariate polynomial

Soundness probability:

- randomization with soundness prob.
- a single sumcheck protocol with soundness prob.

1/F |

logUp
Preliminaries: Sumcheck

https://eprint.iacr.org/2022/1530

convenient for counting the degree

Computational Cost in each step of computing the evaluation of a univariate polynomial over a set of size .i = 1,…, n si(X) D ⊇ {±1} d + 1

domain evaluations over each for each Hi = {±1}n−i

Step i:

Overall cost:

Notations:
- : time in field additions/subtractions
- : time in field multiplications
- : # field adds for
- : # field multiplications for

A
M
|Q |A Q
|Q |M Q

Question ?

logUp
Main lemma (set inclusion)

https://eprint.iacr.org/2022/1530

Extension for Batch-column Lookup

 is injective (one-to-one): t

Or not one-to-one:

logUp
Batch-column Lookup

https://eprint.iacr.org/2022/1530

Rational Equality:

But sumcheck protocol only works for polynomial one.
Main Idea:
- splits the sum of terms into partial sums of roughly same number of terms .
- provides multilinear help functions for each sum
- each multilinear help function is subject to a domain identity

M + 1 ℓ

logUp
Main idea of batch-column lookup

https://eprint.iacr.org/2022/1530

Main Idea:
- splits the sum of terms into partial sums of roughly same number of terms .
- provides multilinear help functions for each sum
- each multilinear help function is subject to a domain identity

M + 1 ℓ

Reduce domain identity to sumchecks:
• for

• MLE

1. verifier sends a random challenge
2. run sumcheck for

h(x) = 0 x ∈ H = {±1}n

p(z) = ∑
x∈H

LH(x, z) ⋅ h(x)

z ∈ Fn

LH(X, z) ⋅ h(X)

Reduce sumchecks to a single one.K + 1

logUp
Protocol for batch-column lookup

https://eprint.iacr.org/2022/1530

logUp
Protocol for batch-column lookup

https://eprint.iacr.org/2022/1530

logUp
Protocol for batch-column lookup

https://eprint.iacr.org/2022/1530

Two methods to handle this.
1. omit the constraint on , letting the verifier

sample and prover set arbitrary.
—> with completeness error prob.

2. modify the identity for over

which imposes no condition on whenever

.

x
x h0

|H | / |F |
h0 H

h0
ϕ0(⃗x) = 0

Remark.

Question:
why not consider the condition x ∉ {fi(⃗x)}x∈H

As for completeness, honest prover
has guaranteed .f ⊂ t

logUp
Protocol for batch-column lookup: variants

https://eprint.iacr.org/2022/1530

Variant 1: single-column lookup

Variant 2: range equality

Question.

Question.

logUp
Soundness

https://eprint.iacr.org/2022/1530

 from rational equalityϵ1

 from domain identitiesϵ2 K

Reduce sumchecks to a single one.K + 1

 from batching sumchecksϵ3 = 1/ |F | K + 1

 from the single sumcheck protocolϵsumcheck

total soundness error

logUp
Computational cost

https://eprint.iacr.org/2022/1530

Overall cost:

Notations:
- : time in field additions/subtractions
- : time in field multiplications
- : # field adds for
- : # field multiplications for

A
M
|Q |A Q
|Q |M Q

Domain evaluation strategy for using batch inversion.Q

 has variables with absolute degree .Q v = M + K + 3 d = ℓ + 2

ℓ2(M + A)

ℓ(M + A)

ℓ(M + A)

 for batch inversion of +3(M − K) M − K φi

overall cost for evaluation of Q

logUp
Computational cost

https://eprint.iacr.org/2022/1530

Sumcheck cost:

Domain evaluation strategy for using batch inversion.Q

ℓ2(M + A)

ℓ(M + A)

ℓ(M + A)

 for batch inversion of +3(M − K) M − K φi

overall cost for evaluation of Q

Batch inversion for computing the inverses for a sequence .
1. compute the cumulative products for .
2. compute their inverses reversely, starting from , and putting for

3. compute the inverses derived via

(ai)N
i=1

pi = a1…ai i = 1,…, n
qn =

1
pn

qi−1 = qi ⋅ ai i = n, . . . ,2

a−1
i = pi−1 ⋅ qi

Overall cost for batch inversion:
 multiplications and a single inversion.3 ⋅ (N − 1)

logUp
Computational cost and optimal choice of ℓ

https://eprint.iacr.org/2022/1530

Optimal choice of :
- : helper functions (commitments) but with low degree of , .
- : a single commitment but with a degree of
- optimal choice for is trade-off between arithmetic degree and the number of commitments.

ℓ
ℓ = 1 M + 1 Q d = 3
ℓ = M + 1 d = M + 3

ℓ

 has variables with absolute degree .Q v = M + K + 3 d = ℓ + 2

Question:
The reason of not committing to is that
we’ve committed to , which is computed
by all .

fi
m(x)

fi

logUp
Vector-valued lookups

https://eprint.iacr.org/2022/1530

Vector lookups in PlookupVector lookups in logUp

Question:
what is the difference of choosing multivariate and univariate randomization.

logUp
Batch-column lookups using multivariate Plookup

https://eprint.iacr.org/2022/1530

Bridge Plookup strategy with sumcheck protocol using multivariate time shift in Hyperplonk [CBBZ22].

“neighboring values” in multiplicative group

“time shift” in Plookup strategy in a cyclic subgroup with a generator

logUp
Multivariate time shift function

https://eprint.iacr.org/2022/1530

Bridge Plookup strategy with sumcheck protocol using multivariate time shift in Hyperplonk [CBBZ22].

https://eprint.iacr.org/2022/1355.pdf

It has to build an efficient function that generates the entire boolean hypercube.g

primitive polynomial

primitive element

Generating hypercube via primitive polynomial.
- with primitive polynomial
1. Initialize a set
2. Multiply to the last element added in the set.

1. If degree of is 2,
2. Else, .

3. Add in the set until the size of set is .

GF(22) q(x) = x2 + x + 1
{0,1,x}

x a
ax a = ax % q(x)

a = ax
a 22

https://blog.csdn.net/cyq6239075/article/details/105738710

Wiki

https://en.wikipedia.org/wiki/Primitive_polynomial_(field_theory)#:~:text=In%20finite%20field%20theory,%20a,GF(pm)%20such%20that

logUp
Multivariate time shift function

https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1355.pdf

A quadratic generator in boolean hypercube.

logUp
Multivariate time shift function

https://eprint.iacr.org/2022/1530
https://eprint.iacr.org/2022/1355.pdf

Time shift function on the punctuated hypercubeT

“neighboring values” in punctuated hypercube (multiplicative groups)

logUp
Batch-column Plookup

https://eprint.iacr.org/2022/1530

Notations

(t, (f1, …, fM))

(s1, …, sM+1)

Plookup identity for mutliset check

logUp
Batch-column Plookup

https://eprint.iacr.org/2022/1530

Notations

1. Plookup identity for mutliset check

2. Reduce it to a grand product identity over H′

logUp
Batch-column Plookup

https://eprint.iacr.org/2022/1530

3. Split the product into partial products for controlling the degree of the grand product identity. K

4. Compute the cumulative products along the orbit of the time shift on H′

5. Reduce domain identities and point identities (for correctness of the grand product) to sumchecks over by Lagrange polynomial.H

containing the resulting grand product when k = K
6. Batch all sumchecks to one single sumcheck.

typo: h → hk

logUp
Batch-column Plookup

https://eprint.iacr.org/2022/1530

7. The resulting overall sumcheck in batch-column Plookup

 has variables with absolute degree .Q v = M + K + 3 d = ℓ + 2

Compared to logUp

 has variables with absolute degree .Q v = 2 ⋅ (M + 1 + K) + 3 d = ℓ + 2

logUp
Comparison of computational costs in batch-column lookups

https://eprint.iacr.org/2022/1530

Batch-column lookups using Multivariate Plookup Batch-column lookups using logUp

oracle costs:
 for (sorted union of table and witness), for (cumulative products)M + 1 si K φk

significant lower oracle costs:
 for (helper functions), and for (multiplicities) ?K hi 1 m

logUp
Comparison of computational costs

https://eprint.iacr.org/2022/1530

ZK9: logUp - Lookup arguments based on the logarithmic derivative - Ulrich Haböck:
https://www.youtube.com/watch?v=qv_5dF2_C4g&themeRefresh=1

